I am in serve for Shanghai, CDL, IBM, CHINA. All the posts in this blog are of my personal opinions. They do not represent IBM's positions, strategies and opinions.
Tuesday, July 24, 2007
证明-矩阵最小乘数问题
show that the solution to the recurrence is Ω(2n). 这个问题是这样的: Ω(2n) 即只要 >= 2n 第一步,n=1,有p(1) = 1 = 20 第二步,n <>Ω(2n) >= 2n 第三步,n= l ,p(n) = sigma: p(k)p(n - k)。因为k & n-k 小于l,于是有 p(n) >= 2k * 2n-k= 2n 符号所代表的意义相当的重要,没有Ω(2n)>=2n的解释,基本很难证明这个命题。
No comments:
Post a Comment