Monday, July 23, 2007

请证明

r1(n) = r2(n) = 1

r1(j) = r2(j) = r1(j+1) + r2(j+1)

Use above equations to show that ri(j), the number of references made to fi[j] in a recursive algorithm, equals 2n - j.


证明如下:

第一步:n - j = 1
r1(j)=r2(j) = r1(j+1) + r2(j+1) = r1(n) + r2(n) = 2 = 2n - j

第二步:若n - j = k
r1(j)=r2(j) = r1(j+1) + r2(j+1) = 2n - j

若当n - j = k + 1
r1(j) = r1(j+1) + r2(j+1)
因为 n - (j+1) = k,所以 r1(j) = 2n - (j +1) + 2n - (j +1) = 2n - j

综上,命题得证。
纪念,走出数学系后的第五个年头的一个归纳法证明。


No comments: