Let X = 《x1, x2, ..., xm》 and Y = 《y1, y2, ..., yn》 be sequences, and let Z = 《z1, z2, ..., zk》 be any LCS of X and Y.
1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.
2. If xm ≠ yn, then zk ≠ xm implies that Z is an LCS of Xm-1 and Y.
3. If xm ≠ yn, then zk ≠ yn implies that Z is an LCS of X and Yn-1.
1.如果zk ≠ xm ,则zk ≠ yn 。令z k+1 = xm = yn,则《Z, zk+1》是CS,但是长度大于Z。同时,若存在比Zk-1长的CS,则的长度大于Zk。得证。
2.xm ≠ yn & zk ≠ xm,若zk = yn,Z不是LCS of Xm-1 and Y,则Y中不存在一个yl,使得l大于n,有zk+1 = yl
若zk ≠ yn,Z不是LCS of Xm-1 and Y,则存在zk+1 = yl = xo,使《Z, z+1》是CS of Xm-1 and Y。进一步,是CS of Xm and Yn 。矛盾
3 同2。
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment